to nearby naphthyl groups. Van der Waals distances between carbons in neighboring naphthyl groups are between 3.620 and 3.719 Å.

Conclusions

The significant features of the structure can be summarized in the following manner. The calcium ion is coordinated to seven oxygen atoms, all almost equidistant from the calcium, arranged in a distorted pentagonal bipyramid. Phosphate and other bond distances and angles appear normal except that the C-O(PO₃) bond distances are significantly shorter and the C-O-P bond angles are significantly larger in calcium 1-naphthyl phosphate than in other organic phosphates for which the structures are known. The organic phosphates with which this is compared involve non-aromatic carbon atoms.

Since hardly any data are available on hydrolysis rates of the organic phosphates discussed here, no conclusions regarding hydrolysis rates can be made at this time. However, the short C-O bond distances and the longer P-OR bond distances suggest hydrolysis attack at P-O rather than C-O in aromatic organic phosphates.

This investigation was supported by Public Health Service Research Grant GM-08395-03 from the Division of General Medicine. We wish to express our sincere thanks for this support. We also wish to express our thanks to the Montana State University Computing Center for providing time on the IBM 1620 data processing machine, to the University of Washington Research Computing Center for providing time on the IBM 709 for the Busing & Levy full-matrix leastsquares refinement, to Professor Lyle H. Jensen of the University of Washington for assisting us in these calculations and to Dr Graeme S. Baker and Mrs Rose L. Baker for helping us with the chemical analysis.

References

- BUSING, W. R. & LEVY, H. A., (1959), Crystallographic Least Squares Refinement Program for the IBM 704, U.S. Atomic Energy Comission Publication ORNL 59-4-37.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747.
- DUNITZ, J. D. & ROLLETT, J.S. (1956). Acta Cryst. 9, 327.
- HAAKE, P.C. (1960). Ph. D. Thesis, Harvard University.
- HELM, D. VAN DER Least Squares Program Write-up, Inst. Cancer Research.
- Howells, E. R., PHILLIPS, D. C. & ROGERS, D. (1950). Acta Cryst. 3, 210.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- KRAUT, J. (1961). Acta Cryst. 14, 1146.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- LI, CHI-TANG. (1964). Ph. D. Thesis, Montana State University.
- PHILLIPS, D.C. (1954). Acta Cryst. 7, 746.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819.
- SUNDARALINGAM, M. & JENSEN, L. H. (1964). Abstr. ACA Annu. Meeting, Montana State Univ., July, 1964.
- SVETICH, G. W. (1964), Least Squares Refinement Program, Montana State Univ.
- TRUEBLOOD, K. N., HORN, P. & LUZZATI, V. (1961). Acta Cryst. 14, 965.

Acta Cryst. (1965). 19, 645

Refinement of the Crystal Structure of Triphenyl Phosphate

BY G. WILLIAM SVETICH* AND CHARLES N. CAUGHLAN

Department of Chemistry, Montana State University, Bozeman, Montana, U.S.A.

(Received 5 November 1964 and in revised form 19 March 1965)

The structure of triphenyl phosphate has been refined by full-matrix least-squares computations to a final R of 0.109 for 762 reflections with measurable intensities. The space group is $P2_1/a$ with unit-cell dimensions of a=17.124, b=5.833, c=16.970 Å and $\beta=105^{\circ}21'$. The P–O bond distances are 1.599, 1.554, 1.549 and 1.432 Å. O–P–O bond angles range from 119.1° to 96.6°. The remaining bond distances and angles are in agreement with previously determined structures.

Introduction

We are interested in the structures of organic phosphates as part of a program to correlate the structural data with hydrolysis rate studies. Such a correlation requires accurate structural details for a variety of organic phosphates including monosubstituted, disubstituted and trisubstituted phosphates.

Accurate structures are known for calcium thymidylate as determined by Trueblood, Horn & Luzzati (1961), 2-aminoethanol phosphate as determined by Kraut (1961), adenosine-5' -phosphate, determined by Kraut & Jensen (1963) and calcium 1-naphthyl phosphate, determined by Li & Caughlan (1965), all of which are monosubstituted organic phosphates. The

^{*} Present address: 7126 So. 130th, Seattle, Washington, U.S.A.

only disubstituted organic phosphate for which a structure is known is dibenzyl phosphate determined by Dunitz & Rollett (1956). The structure of triphenyl phosphate was determined by Davies & Stanley (1962). but since it was determined in projections, and since there was considerable overlap in two of the projections, bond lengths and angles of sufficient accuracy for meaningful comparison were not obtained. Since we had collected three-dimensional data at the time of their publication, we decided to proceed with the refinement in order to determine the precise bond lengths and angles required for our study.

Experimental

Commercial triphenyl phosphate (Eastman Distillation Products Co.) was recrystallized by slow evaporation of an ether solution to produce long thin needles. X-ray examination indicated monoclinic symmetry. Unit-cell parameters were measured on Weissenberg and precession films obtained with Cu Ka radiation. Sodium chloride data were obtained on the same film for calibration. The lattice parameter a = 5.6402 Å (Swanson & Fuyat, 1953) was used for the sodium chloride and a wavelength of 1.5418 Å was taken for the mean of $K\alpha_1$, and $K\alpha_2$. The cell parameters of triphenyl phosphate determined in this manner are:

$$a = 17 \cdot 124 \pm 0.048 \text{ Å}$$

$$b = 5 \cdot 833 \pm 0.036$$

$$c = 16 \cdot 970 \pm 0.042$$

$$\beta = 105^{\circ} 21' \pm 15'$$

Within experimental error these agree with those of Davies & Stanley (1962). The uncertainties indicated are estimated standard deviations. The needle axis of the crystal habit was parallel to the b axis.

The density of triphenyl phosphate is 1.302 ± 0.001 g.cm⁻³ (Handbook of Chemistry and Physics, 1952). The computed density is 1.331 g.cm⁻³ with four molecules per unit cell. Systematic absence of hol reflections with h odd and 0k0 with k odd fixes the space group as $P2_1/a$.

Unidimensionally integrated Weissenberg photographs of levels from k=0 to k=3 were taken with

Table 1. Alomic parameters for tripnenvi phosphat	Table 1.	Atomic	parameters	for	trinhenvl	nhosnhate
---	----------	--------	------------	-----	-----------	-----------

Atom	rla	$\sigma(x a)$	n/h	$\sigma(u h)$	-10	-(-1)
P(1)	0.3888	0(x/u)	y_{10}	0(0/0)	0.2520	0.0007
$\dot{0}$	0.4388	0.0002	0.5459	0.0016	0.2353	0.0002
O(3)	0.3220	0.0005	0.2812	0.0010	0.1752	0.0005
O(4)	0.3317	0.0005	0.4742	0.0018	0.2066	0.0000
O(5)	0.4396	0.0005	0.1687	0.0017	0.2900	0.0005
C(6)	0.5246	0.0007	0.5460	0.0020	0.2359	0.0003
C(7)	0.5652	0.0007	0.3702	0.0030	0.2338	0.0008
C(8)	0.6479	0.0007	0.3800	0.0024	0.2114	0.0008
C(0)	0.6902	0.0000	0.5835	0.0033	0.2557	0.0003
CUD	0.6444	0.0009	0.7644	0.0025	0.2780	0.0009
C(11)	0.5622	0.0000	0.7301	0.0023	0.2789	0.0009
C(12)	0.3420	0.0002	0.2102	0.0027	0.1022	0.0009
C(13)	0.3794	0.0000	0.0086	0.0027	0.1017	0.0008
C(14)	0.4013	0.0000	0.0551	0.0023	0.0280	0.0009
CUS	0.3846	0.0007	0.0917	0.0054	0.0670	0.0012
C(16)	0.3453	0.0014	0.2890	0.0048	0.0604	0.0012
C(17)	0.3244	0.0014	0.3680	0.0048	0.0411	0.0012
C(18)	0.3516	0.0007	0.5172	0.0028	0.3704	0.0009
C(19)	0.3234	0.0010	0.3638	0.0023	0.4261	0.0008
C(20)	0.3383	0.0010	0.4037	0.0047	0.5067	0.0011
C(21)	0.3840	0.0011	0.5070	0.0047	0.5453	0.0011
C(22)	0.4105	0.0011	0.7457	0.0042	0.1011	0.0013
C(23)	0.3954	0.0009	0.7099	0.0031	0.4133	0.0013
0(20)	0 3754	0 0007	0 1077	0 0051	04155	0 0011
		Calculate	d hydrogen co	oordinates		
H(24)	0.5300		0.2210		0.1825	
H(25)	0.6818		0.2394		0.2004	
H(26)	0.7572		0.6020		0.2680	
H(27)	0.6754		0.9210		0.3031	
H(28)	0.5259		0.8763		0.2852	
H(29)	0.3899		-0.1083		0.1530	
H(30)	0.4359		-0.2076		0.0281	
H(31)	0.4031		0.0528		-0.0923	
H(32)	0.3266		0.3914		-0.0850	
H(33)	0.2958		0.5384		0.0449	
H(34)	0.2872		0.2129		0.3982	
H(35)	0.3171		0.2870		0.5474	
HGG	0.3977		0.6210		0.6087	
H(37)	0.4434		0.8980		0.5211	
H(38)	0.4177		0.8280		0.3746	
()	0 11/1		0 0207		0 3 1 7 0	

An isotropic B of 4.500 was assigned to all the hydrogens.

Cu $K\alpha$ radiation. In addition, unidimensionally integrated precession photographs of the zero levels hk0and 0kl were taken with Mo $K\alpha$ radiation. The intensities of the reflections were estimated visually by comparison with a standard intensity scale. No correction was made for absorption effects since the crystal was small ($0.05 \times 0.05 \times 3$ mm); the linear absorption coefficient was 14.11 cm⁻¹ for Cu $K\alpha$ radiation.

Of the total of approximately 3642 unique reflections within the Cu $K\alpha$ limit, intensity data were obtained for 762, which is 21%.

The refinement

Atomic scattering factors used in the refinement were: hydrogen of McWeeny (1951), carbon and oxygen of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955), phosphorus of Viervoll & Øgrim (1949).

The coordinates of Davies & Stanley (1962) were used to begin the refinement. The initial R was 0.21. One cycle of refinement with the program of Busing & Levy (1959) reduced R to 0.15. Coordinates, isotropic temperature factors, and an overall scale factor were adjusted in the first cycle. The weighting scheme weighted all reflections as $1/F_o$.

Two cycles of least-squares refinement with anisotropic temperature factors reduced R to 0.13. Weighting for these two cycles was again $1/F_o$.

For the final three cycles of least-squares computations, the weighting scheme of Hughes (1941) was employed. The weighting was:

$$\sqrt[]{w=4F_{o}\min/F_{o}, F_{o} > 4F_{o}\min} \\ \sqrt[]{w=1.0}, F_{o} \le 4F_{o}\min.$$

Table 2.	Thermal	paramete	ers for	triphenyl	phosphate
S	Standard d	eviations a	are belo	w each en	try

Atom	β_{11}	β22	β33	β_{12}	β_{13}	B23
P(1)	0.00283	0.02910	0.00363	0.00069	0.00072	0.00170
- (-)	0.00012	0.00207	0.00015	0.00036	0.00011	0.00041
O(2)	0.00415	0.01747	0.00531	-0.00167	0.00138	0.00233
0(1)	0.00041	0.00438	0.00046	0.00097	0.00035	0.00102
O(3)	0.00449	0.04330	0.00603	-0.00180	0.00287	0.00094
- (-)	0.00043	0.00520	0.00057	0.00110	0.00041	0.00125
O(4)	0.00411	0.03988	0.00470	0.00120	0.00155	0.00041
-(1)	0.00039	0.00526	0.00064	0.00104	0.00035	0.00106
O(5)	0.00482	0.04043	0.00330	0.00217	0.00083	0.00091
- (-)	0.00041	0.00504	0.00038	0.00122	0.00033	0.00115
C(6)	0.00344	0.01730	0.00480	-0.00159	0.00169	0.00718
-(-)	0.00062	0.00840	0.00071	0.00191	0.00056	0.00178
C(7)	0.00418	0.00740	0.00545	0.00196	0.00255	-0.00367
-(-)	0.00060	0.00663	0.00070	0.00156	0.00053	0.00165
C(8)	0.00556	0.03816	0.00524	-0.00163	0.00344	-0.00464
-(-)	0.00075	0.00972	0.00076	0.00207	0.00062	0.00215
C(9)	0.00589	0.01796	0.00611	-0.00178	0.00226	0.00173
-(-)	0.00072	0.00923	0.00086	0.00219	0.00067	0.00190
C(10)	0.00622	0.00308	0.00605	0.00036	0.00121	-0.00180
- ()	0.00083	0.00779	0.00083	0.00189	0.00065	0.00168
C(11)	0.00376	0.03199	0.00508	-0.00395	0.00144	-0.00189
-()	0.00069	0.00881	0.00071	0.00162	0.00056	0.00179
C(12)	0.00581	0.03897	0.00244	0.00071	0.00158	0.00001
-()	0.00066	0.00767	0.00056	0.00178	0.00051	0.00163
C(13)	0.00772	0.01689	0.00557	-0.00290	0.00240	0.00137
- (-)	0.00080	0.00742	0.00077	0.00173	0.00062	0.00177
C(14)	0.00601	0.04860	0.00665	-0.00236	0.00223	-0.00693
-()	0.00085	0.01019	0.00113	0.00214	0.00080	0.00254
C(15)	0.01252	0.05992	0.00327	0.00080	0.00072	-0.00230
	0.00141	0.01479	0.00089	0.00357	0.00083	0.00298
C(16)	0.01094	0.04730	0.00656	-0.00758	0.00089	0.00956
	0.00126	0.01510	0.00115	0.00302	0.00095	0.00293
C(17)	0.00658	0.03612	0.00420	0.00065	0.00173	0.00169
-()	0.00075	0.00818	0.00069	0.00174	0.00060	0.00182
C(18)	0.00380	0.03920	0.00319	0.00677	0.00165	0.00011
-()	0.00060	0.00858	0.00062	0.00173	0.00051	0.00181
C(19)	0.00833	0.05818	0.00312	-0.00577	0.00194	-0.00086
-()	0.00090	0.00968	0.00071	0.00253	0.00067	0.00231
C(20)	0.00710	0.09971	0.00482	-0.00545	0.00222	0.00504
-()	0.00091	0.01442	0.00099	0.00308	0.00077	0.00303
C(21)	0.00672	0.04985	0.00716	0.00120	0.00291	-0.00119
	0.00091	0.01132	0.00097	0.00258	0.00080	0.00285
C(22)	0.00827	0.02289	0.00736	-0.00714	0.00298	-0.00361
• •	0.00096	0.00822	0.00107	0.00217	0.00087	0.00227
C(23)	0.00689	0.03246	0.00517	-0.00665	0.00030	-0.00406
. ,	0.00082	0.00942	0.00089	0.00206	0.00074	0.00215

In the final two cycles of least-squares refinement, hydrogen atoms were included in their computed positions. The isotropic temperature factors of the hydrogen atoms were arbitrarily assigned the value $B = 4.5 \text{ Å}^2$. The mean final adjustment in each type of parameter, in terms of their standard deviations, was 0.3σ . The greatest final adjustment was 1.0σ , which occurred for two parameters.

A concluding round of structure factor calculations resulted in an R value of 0.109 for the 762 observed reflections with measurable intensities. The refined atomic parameters are given in Tables 1 and 2. Observed and calculated structure factors are listed in Table 3.

Discussion

Fig. 1 and Table 4 contain the bond distances and angles calculated from the parameters of Table 1.

Several noteworthy facts may be pointed out. For the P-OR bonds, the lengths are comparable to although slightly shorter than those reported by Davies & Stanley (1962), and about the same as those reported for dibenzyl phosphate. The short P-O bond length of 1.432 Å is shorter than any yet reported in organic phosphates. However, P-O bond lengths as low as 1.40 Å have been reported (Cruickshank, 1961) for inorganic phosphates. The length of this bond in triphenyl phosphate suggests that it is very nearly a double bond, as one would expect. The mean P-OR distance is 1.567 Å with an r.m.s. deviation of 0.023 Å. This agrees well with a reported mean P-OR distance of 1.565 (Kraut & Jensen, 1963) and 1.555 Å in dibenzyl phosphate (Dunitz & Rollett, 1956).

There appears to be some slight difference in the bond distance for the three P-OR bonds, since P-O(2) appear longer than P-O(3) or P-O(4). At first sight

Table 3. Observed and calculated structure factors Within each group the columns reading from left to right contain the values of l, $10F_o$ and $10F_e$.

80 6944 45559 81 7978 81 7978 82 7978 82 7788 8911 1355 55 24556 78 910114 01112 2757 81 7982 2258 554 91 1255 55 24556 78 910114 01112 2757 84 911 1355 56 778 88 911 1355 55 24556 78 910114 01112 758 556 778 88 911 1355 56 778 8911 1355 55 24556 78 910114 01112 758 556 778 8911 1355 55 24557 2458 2558 2554 2558 2554 2558 2554 2558 2554 2558 2554 2558 2558
$ \begin{array}{c} 1 \\ -579 \\ -579 \\ -582 \\ -582 \\ -83 \\ -125 \\ -83 \\ -125 \\ -83 \\ -125 \\ -83 \\ -125 \\ -83 \\ -125 \\ -83 \\ -125 \\ -10$
80/17221525 19484492232264791198448553276488551388 007172697479953578570500711883081214688 20 628179254987979795382125882486 00875255555855855855855855855855855855855855
2282242255252534553457554555555555555555555
04 23236895 24242424242424242424242424242424242424
1804 777 9 11 20 94 09 22 10 20 57 11 698 14 23 25 26 93 25 12 12 12 12 12 12 12 12 12 12 12 12 12
78 -70 -190 977 -2016 -1977 -2017 -2
12273445556778911135 011227374455567889101 112233545567890 01122374567791 02233555677899011 01
$\begin{array}{c} 90 \\ 149 \\ 243337 \\ 22254 \\ 5327 \\ 22254 \\ 5379 \\ 2125 \\ 22254 \\ 5379 \\ 2225 \\ 2225 \\ 5379 \\ 2225 \\ 2225 \\ 5379 \\ 2225 \\ 2225 \\ 5379 \\ 2225 \\ $
-209 -177 -1997 -1997 -105 -257 -257 -257 -257 -257 -257 -257 -25
ער לביניני גיולטשר לאולט איליאיי ייטיאייטער איניטער איניטער איניטער אינטער א
22719949602707155499051223 19964445517931052015201520152015201520152015201520152
48137.75711449663793256 32439729381653683348663788643 7584825966 81164946803749868 4698328687211424 88286636 693119562 867
291171 1-1×4224 4-206625889000123 1-1×42244 2244 2344 244 10 11 24 24 24 24 24 24 24 24 24 24 24 24 24
1256 94 97 121 04 9785 96 63 3 2156 14 49 33 44 10 12 12 12 12 12 12 12 12 12 12 12 12 12
-135 -135 -135 -135 -135 -135 -135 -135
איאים טואיי ג'וניטטאיאייאיייאיי אוואייי אוואייי איזאייי איזאייי איזאיין איזאיין איזאיין איזאיין איזאיין איזאיי
112300 212171 2126 21277 7590 120 120 120 120 120 120 120 120 120 12
-17 12527-1250 -12577-1250 -12577-1250 -12577-1250 -12577-1250 -12577-1250 -12577-1250 -12577-1257 -12577-1257 -12577-12577-1257 -12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-125777-125777-12577-12577-12577-12577-12577-12577-12577-12577-12577-12577-
דודטרט פא אין אין אין אין אין אין אין אין אין אי
96-152 981 12 14 64 93 87 762 661 660 0 14 26 66 7 15 26 16 16 28 862 662 15 26 16 16 28 862 662 15 26 16 16 28 862 662 15 26 16 16 28 862 662 15 26 16 16 28 862 662 15 26 16 16 16 16 16 16 16 16 16 16 16 16 16
76 154 140 -19 -04 11 55-5-55 11 54 -55 15 15 15 15 15 15 15 15 15 15 15 15 1
יון איליט אילי איליט איל אילי אילי אילי איל
984 22 385357742837751032187414994331990009 2 92722228669779162439546 22 15921961361214494 632494578344283945734283914 2 22657911239869779162439546 22 159219211111111111111111111111111111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Le Le averable asserve blacetro locatere blocketro blocketre blocketre
$\begin{array}{c} 64 \\ 8 \\ 57 \\ 78 \\ 8 \\ 94 \\ 15 \\ 11 \\ 98 \\ 11 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$
$\begin{array}{c} -65 \\ -755 \\ -49 \\ +41 \\ -523 \\ -1521 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -129 \\ -120 \\ -129 \\ -120 \\ -129 \\ -120 \\ -129 \\ -120 \\ -129 \\ -120 \\ -129 \\ -120 \\ -129 \\ -120 \\ -120 \\ -78 \\ -78 \\ $

Table 4. Bond angles	in triphe	enyl phosphate
Atoms	Angle	Standard deviation
O(2)-P(1)-O(3)	104·0°	0.24°
O(2) - P(1) - O(4)	104·0	0.66
O(2) - P(1) - O(5)	112.9	0.60
O(3) - P(1) - O(4)	96.6	0.54
O(3)-P(1)-O(5)	119.1	0.65
O(4)–P(1)–O(5)	117.8	0.28
P(1)-O(2)-C(6)	125.3	0.91
P(1)-O(3)-C(12)	122.6	0.82
P(1)-O(4)-C(18)	123.1	0.80
O(2)-C(6)-C(7)	123.4	1.28
O(2)-C(6)-C(11)	114.4	1.38
C(7)-C(6)-C(11)	122.1	1.28
C(6)-C(7)-C(8)	122.0	1.36
C(7) - C(8) - C(9)	117.1	1.55
C(8)-C(9)-C(10)	118.5	1.40
C(9)-C(10)-C(11)	120.2	1.42
C(6)-C(11)-C(10)	120.0	1.54
O(3)-C(12)-C(13)	118.7	1.27
O(3)-C(12)-C(17)	114.2	1.37
C(13)-C(12)-C(17)	126.9	1.51
C(12)-C(13)-C(14)	115.8	1.43
C(13)-C(14)-C(15)	123.3	1.95
C(14)-C(15)-C(16)	116.0	2.15
C(15)-C(16)-C(17)	125.8	1.99
C(12)-C(17)-C(16)	112.0	1.66
O(4) - C(18) - C(19)	116.3	1.33
O(4) - C(18) - C(23)	122.0	1.45
C(19) - C(18) - C(23)	121.7	1.45
C(18) - C(19) - C(20)	118.4	1.82
C(19) - C(20) - C(21)	121.5	2.07
C(20) - C(21) - C(22)	118.0	1.75
C(21)-C(22)-C(23)	121.4	1.70
C(18) - C(23) - C(22)	119.0	1.68

this appears significant; however, examination of the thermal parameters suggests that corrections for thermal motion for P-O(3) and P-O(4) would lengthen these bonds more than the P-O(2) bond. With this in mind we estimated the effects, according to Busing & Levy (1964). It seems that either a riding motion of the oxygen atom on the phosphorus or some correlated

parallel motion would most likely describe the effect. Accordingly the calculations show the following results:

			Upper	Lower
	Uncorrected	Riding	bound	bound
P-O(2)	1·599 Å	1·599 Å	1·719 Å	1·599 Å
P-O(3)	1.549	1.571	1.709	1.552
PO(4)	1.554	1.569	1.704	1.556
P-O(5)	1.432	1.467	1.592	1.434

In the light of these effects, we feel any differences in the P–OR bond lengths are accounted for by thermal motion. Further consideration of these effects is speculative without more accurate knowledge of the rigid body motion of the phenyl groups.

The phosphate tetrahedron appears more distorted in triphenyl phosphate than in any yet reported in organic phosphates. The bond angles for O-P-O bonds range from 96.6° to 119.1° . As one would expect, the bond angles between the oxygen atoms with the short bond and the other three oxygen atoms are the largest, ranging from 112.9° to 119.1° , indicating maximum repulsion of these oxygen atoms due to the very short P-O bond distance. The angles between the other oxygen atoms, involved in longer bonds, are considerably less, ranging from 96.6° to 104.0° .

The dihedral angles between the P-O-C planes are given in Table 5. The dihedral angles between the phenoxy groups and the P-O-C planes of which the phenoxy

Table 5. Dihedral angles between P-O-C planes in triphenyl phosphate

Planes		Angle
P(1)-O(2)-C(6)	and P(1)-O(3)-C(12)	84°1'
P(1)-O(2)-C(6)	and P(1)-O(4)-C(18)	78 13
P(1)-O(3)-C(12)	and P(1)-O(4)-C(18)	26 26

Fig. 1. Bond distances for triphenyl phosphate.

oxy groups are part are given in Table 6. The equations of the planes are presented in Table 7. The mean deviation of the atoms from the planes is 0.016 Å. For the above calculations, an orthogonal cell was chosen where the X axis of the orthogonal cell is coincident with the x axis of the monoclinic cell.

Table 6. Dihedral angles between P-O-C planes and benzene rings in triphenyl phosphate

Planes	Angle
P(1)-O(2)-C(6) and $O(2)-C(6) -C(11)$	50°41′
P(1)-O(3)-C(12) and $O(3)-C(12)-C(17)$	69 5
P(1)-O(4)-C(18) and $O(4)-C(18)-C(23)$	94 52

Table 7. Equations of planes in triphenyl phosphate referred to orthogonal coordinates

Where $X = x + z \cos \beta$ and $Z = z \sin \beta$; Y = y

P(1)-O(2)-C(6)	-0.1075X + 0.4461Y + 0.8885Z = 3.9971
P(1)-O(3)-C(12)	0.04625X + 0.9514Y - 0.3044Z = 0.9069
P(1) - O(4) - C(18)	0.4692X + 0.8702Y - 0.1503Z = 3.7175
O(2) - C(6) - C(11)	-0.0815X - 0.4092Y + 0.9088Z = 1.5380
O(3) - C(12) - C(17)	0.8290X + 0.4438Y + 0.3403Z = 5.6154
O(4) - C(18) - C(23)	0.8391X - 0.5253Y + 0.1414Z = 2.8987

Dunitz & Rollett (1956) found that the dihedral angles between P–O–C planes and P–O–H planes were near 90°. The values for two pairs of planes in triphenyl phosphate are near 80°, for the other pair, about 30°. The difference may be attributed to packing considerations.

The mean C–O bond length in triphenyl phosphate is 1.412 Å. This bond length lies between the single bond length of 1.43 Å and the shortened partial double

bond length of 1.36 Å (International Tables for X-ray Crystallography, 1962).

This investigation was supported by Public Health Service Research Grant GM-08395-02 from the Division of General Medicine. We wish to express our sincere thanks for this support. We also wish to thank the Computing Center of Montana State University and the Research Computing Laboratory of the University of Washington for grants of free time.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C.H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BUSING, W.R. & LEVY, H.A. (1959). A Crystallographic Least Squares Refinement Program for the IBM 704, U.S. Atomic Energy Commission Publication ORNL 59-4-37.
- BUSING, W.R. & LEVY, H.A. (1964). Acta Cryst. 17, 142.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. p. 5486.
- DAVIES, W.O. & STANLEY, E. (1962). Acta Cryst. 15, 1092.
- DUNITZ, J. D. & ROLLETT, J.S. (1956). Acta Cryst. 9, 327.
- Handbook of Chemistry and Physics (1952). Cleveland: Chemical Rubber Publishing Co.
- HUGHES, E.W. (1941). J. Amer. Chem. Soc. 63, 1737.
- International Tables for X-ray Crystallography. (1962). Vol. III, Table 4.2.5. Birmingham: Kynoch Press.
- KRAUT, J. (1961). Acta Cryst. 14, 1146.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- LI, C. T. & CAUGHLAN, C. N. (1965). 19, 637.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- SWANSON, H. E. & FUYAT, R.K. (1953) Nat. Bur. Stands. Circular 539, Vol. 2.
- TRUEBLOOD, K. N., HORN, P. & LUZZATI, V. (1961). Acta Cryst. 14, 965.
- VIERVOLL, H. & ØGRIM, D. (1949). Acta Cryst. 2, 277.